
 

Module 2: Fundamentals of AC Circuits  

Module Description: 

This module provides a comprehensive extension of circuit analysis to alternating 
current (AC) systems. We will begin by thoroughly understanding the fundamental 
characteristics of sinusoidal waveforms, including their mathematical representation 
and key parameters. A cornerstone of AC circuit analysis, phasor representation, will 
be introduced as a powerful tool for simplifying complex calculations involving phase 
differences. You will gain proficiency in analyzing single-phase AC circuits containing 
individual resistors, inductors, and capacitors, as well as their intricate series and 
parallel combinations, by leveraging the concept of complex impedance. The module 
then transitions to the critical topic of power in AC circuits, distinguishing between 
instantaneous, real, reactive, and apparent power, and explaining the significance of 
the power factor and power triangle. We will delve into the unique phenomenon of 
resonance in RLC circuits, exploring both series and parallel configurations and their 
associated parameters like quality factor and bandwidth. Finally, the module 
concludes with an in-depth look at three-phase balanced systems, covering their 
advantages, common connection types (Star and Delta), and power calculations, 
which are essential for understanding modern electrical power distribution. 

Learning Objectives: 

Upon successful completion of this module, you will be able to: 

● Comprehensively describe and mathematically represent sinusoidal 
waveforms, including their frequency, period, amplitude, and phase angle. 

● Accurately calculate peak, RMS, and average values for various AC quantities 
and understand their practical significance. 

● Perform detailed analysis of single-phase AC circuits containing combinations 
of resistive, inductive, and capacitive components in both series and parallel 
configurations, utilizing complex impedance and admittance concepts. 

● Define, differentiate, and precisely calculate instantaneous, real (average), 
reactive, and apparent power in AC circuits, along with the crucial power factor 
and its representation in the power triangle. 

● Thoroughly explain the phenomenon of resonance in RLC circuits, identify 
resonant frequencies, and calculate associated parameters like quality factor 
and bandwidth for both series and parallel resonant circuits. 

● Analyze and solve problems related to three-phase balanced circuits, 
understanding the relationships between line and phase voltages/currents for 
Star (Wye) and Delta connections, and calculating power in such systems. 

 

Topics: 



 

1. Sinusoidal Waveforms: The Foundation of AC 

Alternating current (AC) is defined by its characteristic sinusoidal variation over time, 
making it fundamentally different from direct current (DC). This section lays the 
groundwork for understanding AC phenomena. 

● Generation of Sinusoidal Waveforms: 
○ Sinusoidal AC voltage (and consequently current) is primarily generated 

by electromagnetic induction. When a coil rotates uniformly within a 
uniform magnetic field (as in an alternator or generator), the rate of 
change of magnetic flux linkage through the coil varies sinusoidally. 
This sinusoidal rate of change induces a sinusoidal electromotive force 
(EMF), which drives the current in a closed circuit. 

○ Mathematically, if a conductor of length 'l' moves with velocity 'v' 
perpendicular to a magnetic field 'B', the induced voltage is e=Blv. In a 
rotating coil, the component of velocity perpendicular to the field varies 
sinusoidally, leading to a sinusoidal induced voltage. 

○ Electronic oscillators (e.g., LC oscillators, RC phase-shift oscillators) 
can also generate sinusoidal waveforms by utilizing the energy storage 
and dissipation characteristics of reactive components. 

● Key Parameters of a Sinusoidal Waveform: A general sinusoidal voltage (or 
current) can be expressed as a function of time: v(t)=Vm sin(ωt+ϕ) or 
v(t)=Vm cos(ωt+ϕ) Where: 

○ v(t): Instantaneous voltage at time 't'. 
○ Vm : Peak (or maximum) value of the voltage. This is the amplitude of 

the sine wave. 
○ ω: Angular frequency in radians per second (rad/s). It describes how 

fast the sine wave oscillates. 
■ Formula: ω=2πf 
■ The term ωt represents the angular displacement in radians at 

time t. 
○ t: Time in seconds. 
○ ϕ: Phase angle (or phase shift) in radians or degrees. It indicates the 

position of the waveform relative to a reference at t=0. A positive ϕ 
means the waveform is shifted to the left (leading), and a negative ϕ 
means it's shifted to the right (lagging). 

● Frequency (f): 
○ Definition: The number of complete cycles of the waveform that occur in 

one second. It quantifies how frequently the waveform repeats. 
○ Units: Hertz (Hz). One Hertz means one cycle per second. 
○ Formula: f=1/T (where T is the period). 

● Period (T): 
○ Definition: The time required for one complete cycle of the waveform to 

occur. It is the reciprocal of frequency. 
○ Units: Seconds (s). 
○ Formula: T=1/f 

● Amplitude (Vm  or Im ): 



 

○ Definition: The maximum instantaneous value attained by the voltage 
(Vm ) or current (Im ) during a cycle. It's the height of the waveform from 
its center line to its peak. 

● Phase Angle (ϕ or θ): 
○ Definition: The angular displacement of a sinusoidal waveform from a 

reference point at t=0. When comparing two waveforms of the same 
frequency, their phase difference indicates whether one waveform 
"leads" (occurs earlier) or "lags" (occurs later) the other. 

○ If v1 (t)=Vm1 sin(ωt+ϕ1 ) and v2 (t)=Vm2 sin(ωt+ϕ2 ): 
■ If ϕ1 >ϕ2 , v1 (t) leads v2 (t) by (ϕ1 −ϕ2 ) degrees/radians. 
■ If ϕ1 <ϕ2 , v1 (t) lags v2 (t) by (ϕ2 −ϕ1 ) degrees/radians. 
■ If ϕ1 =ϕ2 , they are in phase. 
■ If ∣ϕ1 −ϕ2 ∣=180∘ (or π radians), they are out of phase (or 

anti-phase). 
● Numerical Example 1.1: An AC voltage waveform is described by the equation 

v(t)=325sin(377t+60∘) V. Determine its amplitude, angular frequency, frequency, 
period, and phase angle. 

○ Amplitude (Vm ): By direct comparison with Vm sin(ωt+ϕ), Vm =325 V. 
○ Angular Frequency (ω): ω=377 rad/s. 
○ Frequency (f): f=ω/(2π)=377/(2π)≈60 Hz. 
○ Period (T): T=1/f=1/60≈0.01667 s or 16.67 ms. 
○ Phase Angle (ϕ): ϕ=60∘ (leading). This means the waveform starts 60∘ 

earlier than a reference sine wave at t=0. 

2. AC Quantities: Effective Values 

Since AC voltages and currents are constantly changing, we need specific metrics to 
quantify their "effective" or "equivalent" values for practical circuit analysis and 
power calculations. 

● Peak Value (Vm  or Im ): 
○ Definition: The maximum instantaneous value of the waveform reached 

during a cycle. It is the amplitude. 
● RMS Value (Root Mean Square) (VRMS  or IRMS ): 

○ Definition: The RMS value of an AC quantity is the equivalent DC value 
that would produce the same amount of heat (or power dissipation) in a 
given purely resistive circuit. It is the most commonly used and cited 
value for AC voltages and currents in power systems and specifications 
(e.g., "230 V AC" refers to the RMS value). 

○ Derivation (for any periodic waveform): The RMS value is calculated by 
taking the square root of the mean (average) of the squares of the 
instantaneous values over one complete cycle. VRMS =T1 ∫0T [v(t)]2dt 

○ Formula for Pure Sinusoidal Waveform: For a pure sine wave, the 
relationship between peak and RMS values is fixed: 
VRMS =Vm /2 ≈0.707Vm  IRMS =Im /2 ≈0.707Im  

● Average Value (Vavg  or Iavg ): 
○ Definition: The average value of a symmetrical sinusoidal waveform 

over a complete cycle is zero, as the positive half-cycle cancels out the 



 

negative half-cycle. Therefore, the average value is typically considered 
over a half-cycle (usually the positive half-cycle). 

○ Derivation (for any periodic waveform): The average value is calculated 
by taking the average of the instantaneous values over one half-cycle. 
Vavg =T/21 ∫0T/2 v(t)dt 

○ Formula for Half-Cycle of Pure Sinusoidal Waveform: 
Vavg =(2/π)Vm ≈0.637Vm  Iavg =(2/π)Im ≈0.637Im  

● Form Factor and Peak Factor: 
○ Form Factor (FF): Ratio of RMS value to Average value. For a sine wave, 

FF=(Vm /2  )/(2Vm /π)=π/(22  )≈1.11. 
○ Peak Factor (Crest Factor) (PFk ): Ratio of Peak value to RMS value. For 

a sine wave, PFk =Vm /(Vm /2  )=2  ≈1.414. 
● Numerical Example 2.1: A sinusoidal AC current has an RMS value of 10 A. 

Calculate its peak value and average value (over a half-cycle). 
○ Peak Value (Im ): IRMS =Im /2 ⟹Im =IRMS ×2 =10×2 ≈14.14 A 
○ Average Value (Iavg ): Iavg =(2/π)Im =(2/π)×14.14≈0.637×14.14≈9.01 A 

3. Phasor Representation: Simplifying AC Analysis 

Phasors provide a powerful graphical and mathematical tool to represent sinusoidal 
quantities, making AC circuit analysis as straightforward as DC circuit analysis by 
converting time-domain functions into static complex numbers. 

● Concept of a Phasor: 
○ A phasor is a rotating vector that graphically represents a sinusoidal 

quantity (voltage or current). 
○ Its length represents the amplitude (typically the RMS value, though 

peak value can also be used, consistency is key). 
○ Its angle with respect to a reference axis (usually the positive real axis) 

represents the phase angle of the waveform at time t=0. 
○ Phasors are assumed to rotate counter-clockwise at the angular 

frequency ω. By "freezing" them at a specific time (usually t=0), we can 
represent the relative phase relationships between different quantities. 

○ Example: A voltage v(t)=Vm sin(ωt+ϕ) can be represented as a phasor 
V=(VRMS )∠ϕ, where VRMS =Vm /2 . 

● Complex Plane and Complex Numbers: 
○ Phasors are mathematically represented as complex numbers in the 

complex plane. A complex number Z can be expressed in: 
■ Rectangular Form: Z=x+jy, where x is the real part and y is the 

imaginary part. j is the imaginary unit, where j=−1 . 
■ Polar Form: Z=∣Z∣∠θ, where ∣Z∣ is the magnitude (modulus) and 

θ is the angle (argument). 



 

○ Conversion between Forms: 
■ From Rectangular to Polar: ∣Z∣=x2+y2  θ=arctan(y/x) (paying 

attention to the quadrant of x and y) 
■ From Polar to Rectangular: x=∣Z∣cosθ y=∣Z∣sinθ 

● Complex Impedance (Z): The AC Equivalent of Resistance 
○ In AC circuits, the total opposition to current flow is called impedance, 

denoted by Z. Impedance is a complex number that accounts for both 
energy dissipation (resistance) and energy storage (reactance). 

○ Ohm's Law for AC Circuits (Phasor Form): V=IZ, I=V/Z, Z=V/I. Here V and 
I are voltage and current phasors, and Z is the complex impedance. 

○ Impedance of a Resistor (ZR ): 
■ A resistor dissipates energy but does not store it. In a purely 

resistive circuit, voltage and current are always in phase. 
■ Formula: ZR =R∠0∘=R+j0 (Ohm's). The impedance is purely real. 

○ Impedance of an Inductor (ZL ): 
■ An inductor stores energy in its magnetic field. In a purely 

inductive circuit, the current lags the voltage by 90∘. 
■ Inductive Reactance (XL ): The opposition offered by an inductor 

to the change in current. 
■ Formula: XL =ωL=2πfL (Ohms). 

■ Complex Impedance: ZL =jXL =XL ∠90∘. The impedance is purely 
imaginary and positive. 

○ Impedance of a Capacitor (ZC ): 
■ A capacitor stores energy in its electric field. In a purely 

capacitive circuit, the current leads the voltage by 90∘. 
■ Capacitive Reactance (XC ): The opposition offered by a capacitor 

to the change in voltage. 
■ Formula: XC =1/(ωC)=1/(2πfC) (Ohms). 

■ Complex Impedance: ZC =−jXC =XC ∠−90∘. The impedance is 
purely imaginary and negative. 

○ General Complex Impedance (Z): 
■ For a circuit containing a combination of R, L, and C, the total 

impedance is represented in rectangular form as: Z=R+j(XL −XC ) 
Where R is the net resistance and (XL −XC ) is the net reactance. 

■ In polar form: Z=∣Z∣∠θ 
■ Magnitude of Impedance: ∣Z∣=R2+(XL −XC )2  
■ Impedance Angle: θ=arctan((XL −XC )/R). This angle 

represents the phase difference between the total voltage 
across the impedance and the total current flowing 
through it. If θ is positive, the voltage leads the current 
(inductive circuit); if negative, the voltage lags the current 
(capacitive circuit). 

● Numerical Example 3.1: A series circuit consists of a 20Ω resistor, a 0.1 H 
inductor, and a 100μF capacitor, connected to a 230 V, 50 Hz AC supply. 
Calculate the total impedance of the circuit. 

○ Resistance (R): R=20Ω. So ZR =20∠0∘=20+j0 Ω. 
○ Inductive Reactance (XL ): ω=2πf=2π×50=314.16 rad/s. 

XL =ωL=314.16×0.1=31.416 Ω. So ZL =31.416∠90∘=j31.416 Ω. 



 

○ Capacitive Reactance (XC ): 
XC =1/(ωC)=1/(314.16×100×10−6)=1/(0.031416)≈31.83 Ω. So 
ZC =31.83∠−90∘=−j31.83 Ω. 

○ Total Impedance (Ztotal ): 
Ztotal =ZR +ZL +ZC =(20+j0)+(0+j31.416)+(0−j31.83) 
Ztotal =20+j(31.416−31.83)=20−j0.414 Ω (Rectangular form) 

○ Convert to Polar Form: 
∣Ztotal ∣=202+(−0.414)2 =400+0.1714 ≈400.1714 ≈20.004 Ω 
θ=arctan(−0.414/20)=arctan(−0.0207)≈−1.186∘ Ztotal =20.004∠−1.186∘ Ω. 
This indicates a slightly capacitive circuit overall. 

4. AC Circuit Analysis: Applying Phasors 

With phasors and complex impedance, Kirchhoff's voltage law (KVL) and Kirchhoff's 
current law (KCL) can be applied to AC circuits in the same way they are used for DC 
circuits, significantly simplifying calculations. 

● Individual Components in AC Circuits: 
○ Purely Resistive Circuit: 

■ Phase Relationship: Current and voltage are in phase (ϕ=0∘). 
■ Ohm's Law: V=IR or V=IR (magnitudes). 

○ Purely Inductive Circuit: 
■ Phase Relationship: Current lags voltage by 90∘ (ϕ=−90∘). 
■ Ohm's Law: V=I(jXL ). In magnitude, V=IXL . 

○ Purely Capacitive Circuit: 
■ Phase Relationship: Current leads voltage by 90∘ (ϕ=+90∘). 
■ Ohm's Law: V=I(−jXC ). In magnitude, V=IXC . 

● Series Combinations (RL, RC, RLC Series): 
○ Characteristic: The current is the same through all series components. 

The total voltage is the phasor sum of individual component voltages. 
○ Total Impedance: The total impedance of series-connected components 

is the phasor sum of their individual impedances: Ztotal =Z1 +Z2 +...+Zn  
For RLC series: Ztotal =R+jXL −jXC =R+j(XL −XC ) 

○ Current Calculation: Using Ohm's Law for AC: I=Vsource /Ztotal  
○ Voltage Across Components: 

■ Voltage across Resistor: VR =IZR =IR 
■ Voltage across Inductor: VL =IZL =I(jXL ) 
■ Voltage across Capacitor: VC =IZC =I(−jXC ) 

○ Phasor Diagram for Series RLC: 
■ Choose the current phasor (I) as the reference (horizontal). 
■ VR  is in phase with I. 
■ VL  leads I by 90∘. 
■ VC  lags I by 90∘. 
■ The source voltage Vsource  is the phasor sum of VR , VL , and VC . 

● Numerical Example 4.1 (RL Series Circuit): A 15Ω resistor is in series with an 
inductor with XL =20Ω. The series combination is connected to a 120 V, 60 Hz 
AC supply. Calculate the total impedance, total current, voltage across the 
resistor, and voltage across the inductor. 



 

○ Total Impedance (Ztotal ): ZR =15∠0∘=15+j0 Ω ZL =20∠90∘=0+j20 Ω 
Ztotal =ZR +ZL =(15+j0)+(0+j20)=15+j20 Ω 

■ In polar form: ∣Ztotal ∣=152+202 =225+400 =625 =25 Ω 
■ θ=arctan(20/15)=arctan(1.333)≈53.13∘ 
■ So, Ztotal =25∠53.13∘ Ω. 

○ Total Current (I): Assume the supply voltage is the reference: 
Vsource =120∠0∘ V. 
I=Vsource /Ztotal =(120∠0∘)/(25∠53.13∘)=(120/25)∠(0∘−53.13∘)=4.8∠−53
.13∘ A. (The current lags the voltage by 53.13∘, as expected for an 
inductive circuit). 

○ Voltage across Resistor (VR ): 
VR =I×ZR =(4.8∠−53.13∘)×(15∠0∘)=(4.8×15)∠(−53.13∘+0∘)=72∠−53.13∘ 
V. 

○ Voltage across Inductor (VL ): 
VL =I×ZL =(4.8∠−53.13∘)×(20∠90∘)=(4.8×20)∠(−53.13∘+90∘)=96∠36.87∘ 
V. 

○ Verification (KVL): 
VR +VL =(72cos(−53.13∘)+j72sin(−53.13∘))+(96cos(36.87∘)+j96sin(36.87∘)) 
=(43.2−j57.6)+(76.8+j57.6)=120+j0=120∠0∘ V (matches source voltage). 

● Parallel Combinations (RL, RC, RLC Parallel): 
○ Characteristic: The voltage is the same across all parallel branches. The 

total current is the phasor sum of the individual branch currents. 
○ Admittance (Y): For parallel circuits, it's often more convenient to work 

with admittance, which is the reciprocal of impedance (Y=1/Z). 
Admittance is also a complex number: Y=G+jB Where: 

■ G: Conductance (reciprocal of resistance, G=1/R). Measured in 
Siemens (S). 

■ B: Susceptance (reciprocal of reactance, B=1/X). Measured in 
Siemens (S). 

■ Inductive Susceptance: For ZL =jXL , 
YL =1/(jXL )=−j(1/XL )=−jBL . 

■ Capacitive Susceptance: For ZC =−jXC , 
YC =1/(−jXC )=j(1/XC )=jBC . 

○ Total Admittance: The total admittance of parallel-connected 
components is the phasor sum of their individual admittances: 
Ytotal =Y1 +Y2 +...+Yn  For RLC parallel: Ytotal =G+jBC −jBL =G+j(BC −BL ) 

○ Total Current Calculation: Using Ohm's Law for AC: Itotal =Vsource Ytotal  
○ Current Through Branches: 

■ Current through Resistor: IR =VYR =V(1/R) 
■ Current through Inductor: IL =VYL =V(−jBL ) 
■ Current through Capacitor: IC =VYC =V(jBC ) 

○ Phasor Diagram for Parallel RLC: 
■ Choose the source voltage phasor (Vsource ) as the reference 

(horizontal). 
■ IR  is in phase with Vsource . 
■ IL  lags Vsource  by 90∘. 
■ IC  leads Vsource  by 90∘. 
■ The total current Itotal  is the phasor sum of IR , IL , and IC . 



 

● Numerical Example 4.2 (RL Parallel Circuit): A 50Ω resistor is in parallel with a 
0.2 H inductor. The parallel combination is connected to a 100 V, 50 Hz AC 
supply. Calculate the total current drawn from the supply. 

○ Angular Frequency (ω): ω=2πf=2π×50=314.16 rad/s. 
○ Inductive Reactance (XL ): XL =ωL=314.16×0.2=62.83 Ω. 
○ Admittance of Resistor (YR ): YR =1/R=1/50=0.02 S. In polar form: 

0.02∠0∘ S. 
○ Admittance of Inductor (YL ): 

YL =1/ZL =1/(jXL )=1/(j62.83)=−j(1/62.83)≈−j0.0159 S. In polar form: 
0.0159∠−90∘ S. 

○ Total Admittance (Ytotal ): 
Ytotal =YR +YL =(0.02+j0)+(0−j0.0159)=0.02−j0.0159 S. 

■ In polar form: ∣Ytotal ∣=0.022+(−0.0159)2

 =0.0004+0.0002528  =0.0006528  ≈0.02555 S. 
■ θ=arctan(−0.0159/0.02)=arctan(−0.795)≈−38.49∘. 
■ So, Ytotal =0.02555∠−38.49∘ S. 

○ Total Current (Itotal ): Assume source voltage is reference: 
Vsource =100∠0∘ V. Itotal =Vsource ×Ytotal =(100∠0∘)×(0.02555∠−38.49∘) 
Itotal =(100×0.02555)∠(0∘−38.49∘)=2.555∠−38.49∘ A. (The total current 
lags the voltage, as expected for a predominantly inductive parallel 
circuit). 

5. Power in AC Circuits: Beyond Simple V×I 

In DC circuits, power is straightforward (P=VI). However, in AC circuits, the presence 
of phase differences between voltage and current necessitates a more nuanced 
understanding of power, leading to concepts of real, reactive, and apparent power. 

● Instantaneous Power (p(t)): 
○ Definition: The power at any given instant in time. It is the product of the 

instantaneous voltage and instantaneous current. 
○ Formula: p(t)=v(t)×i(t) 
○ For a sinusoidal circuit, p(t) is also a sinusoidal waveform, but it 

oscillates at twice the supply frequency and typically has a non-zero 
average value. 

● Average Power (Real Power) (P): 
○ Definition: This is the actual power consumed by the resistive 

components of the circuit and converted into useful work (e.g., heat, 
mechanical energy). It is the average of the instantaneous power over 
one complete cycle. This is the power that does "real" work. 

○ Units: Watts (W). 
○ Formulas: 



 

■ P=VRMS IRMS cosϕ (where ϕ is the phase angle between the total 
voltage and total current). 

■ P=IRMS2 Rtotal  (where Rtotal  is the total equivalent resistance of 
the circuit). 

■ P=VR_RMS2 /R (where VR_RMS  is the RMS voltage across the 
resistive part). 

● Reactive Power (Q): 
○ Definition: This is the power that flows back and forth between the 

source and the reactive components (inductors and capacitors) of the 
circuit. It is absorbed during one part of the cycle and returned to the 
source during another. It does no net work but is essential for 
establishing and maintaining electric and magnetic fields. 

○ Units: Volt-Ampere Reactive (VAR). 
○ Formulas: 

■ Q=VRMS IRMS sinϕ 
■ Q=IRMS2 Xnet  (where Xnet =XL −XC  is the net reactance of the 

circuit). 
■ QL =IRMS2 XL  (positive VAR, for inductive components) 
■ QC =IRMS2 XC  (negative VAR, for capacitive components) 

○ By convention, reactive power associated with inductive loads is 
considered positive (lagging VARs), and reactive power associated with 
capacitive loads is considered negative (leading VARs). 

● Apparent Power (S): 
○ Definition: This is the total power that appears to be supplied by the 

source. It is the product of the total RMS voltage and total RMS current 
of the circuit, without considering the phase angle. It represents the 
total capacity of the power delivery system. 

○ Units: Volt-Ampere (VA). 
○ Formulas: 

■ S=VRMS IRMS  
■ S=P2+Q2  (from the power triangle). 

● Power Factor (PF): 
○ Definition: The ratio of the real power (P) to the apparent power (S). It 

indicates how effectively the apparent power is being converted into 
useful real power. 

○ Formula: PF=cosϕ=P/S 
○ The power factor can range from 0 to 1. 

■ PF=1 (unity): Occurs in purely resistive circuits or at resonance, 
where ϕ=0∘. All apparent power is real power. 

■ PF<1: Indicates the presence of reactive components. 
○ Lagging Power Factor: Occurs in inductive circuits, where current lags 

voltage (ϕ>0∘). Most industrial loads (motors, transformers) are 
inductive, leading to a lagging PF. 

○ Leading Power Factor: Occurs in capacitive circuits, where current 
leads voltage (ϕ<0∘). 

● Power Triangle: 



 

○ Graphical Representation: The relationship between Real Power (P), 
Reactive Power (Q), and Apparent Power (S) can be visualized using a 
right-angled triangle, called the power triangle. 

○ Sides: 
■ Hypotenuse: Apparent Power (S) 
■ Adjacent Side: Real Power (P) 
■ Opposite Side: Reactive Power (Q) 

○ The angle between P and S is the power factor angle ϕ. 
○ By Pythagorean theorem: S2=P2+Q2. This is a fundamental relationship 

in AC power. 
○ Significance: The power triangle helps in understanding the power 

dynamics in an AC circuit and is crucial for power factor correction 
(improving system efficiency by reducing reactive power). 

● Numerical Example 5.1: An AC motor draws 5 kW of real power and 3 kVAR 
(inductive) of reactive power from a single-phase AC supply. Calculate the 
apparent power, total current drawn if the supply voltage is 230 V, and the 
power factor. 

○ Real Power (P): P=5 kW =5000 W. 
○ Reactive Power (Q): Q=3 kVAR =3000 VAR (inductive, so positive Q). 
○ Apparent Power (S): Using the power triangle relationship: S=P2+Q2

 =50002+30002  =25×106+9×106  =34×106

 ≈5831 VA. 
○ Total Current (IRMS ): S=VRMS IRMS ⟹IRMS =S/VRMS =5831/230≈25.35 A. 
○ Power Factor (PF): PF=P/S=5000/5831≈0.857 lagging (since Q is 

positive/inductive). 
■ The power factor angle ϕ=arccos(0.857)≈30.98∘. 

6. Resonance in AC Circuits: Special Conditions 

Resonance is a specific condition in an RLC circuit where the effects of inductance 
and capacitance cancel each other out, leading to unique characteristics. 

● Definition of Resonance: Resonance occurs in an RLC circuit when the 
inductive reactance (XL ) equals the capacitive reactance (XC ). At this specific 
frequency (resonant frequency), the circuit's impedance becomes purely 
resistive, and the voltage and current are in phase, resulting in a unity power 
factor. 

○ Condition for Resonance: XL =XC  ωr L=1/(ωr C) ωr2 =1/(LC) ωr =1/LC

  



 

○ Resonant Frequency (fr ): The frequency at which resonance occurs. 

Formula: fr =1/(2πLC  ) (Hz) 
● Series Resonance: 

○ Circuit Configuration: Resistor, inductor, and capacitor are connected in 
series. 

○ Impedance at Resonance: At fr , XL =XC , so Ztotal =R+j(XL −XC )=R+j0=R. 
This means the total impedance is purely resistive and at its minimum 
value. 

○ Current at Resonance: Since impedance is minimum, the current in a 
series resonant circuit is maximum for a given applied voltage: 
Imax =Vsource /R. 

○ Voltage Magnification: Although the total impedance is just R, the 
individual voltages across the inductor (VL =I×XL ) and capacitor 
(VC =I×XC ) can be significantly larger than the applied source voltage, 
especially for high Q circuits. This is due to the phase opposition of VL  
and VC , which effectively cancel each other out. 

○ Power Factor at Resonance: Power factor is unity (1), as ϕ=0∘. 
○ Applications: Resonant filters (band-pass filters), voltage amplifiers, 

radio receivers (tuning circuits). 
● Parallel Resonance (Anti-resonance): 

○ Circuit Configuration: Resistor, inductor, and capacitor are connected in 
parallel. Often, the resistor represents the inherent resistance of the 
inductor coil. 

○ Admittance at Resonance: At fr , Ytotal =G+j(BC −BL ). When XL =XC , then 
BL =BC , so Ytotal =G=1/R. This means the total admittance is purely 
conductive and at its minimum value. 

○ Impedance at Resonance: Since admittance is minimum, the total 
impedance of a parallel resonant circuit is at its maximum value 
(Ztotal =R). 

○ Current at Resonance: Since impedance is maximum, the total current 
drawn from the supply is minimum for a given applied voltage. 

○ Current Magnification: A large circulating current can flow between the 
parallel L and C components, even when the total current drawn from 
the source is minimal. 

○ Power Factor at Resonance: Power factor is unity (1), as ϕ=0∘. 
○ Applications: Tank circuits in oscillators, band-stop filters, impedance 

matching circuits. 
● Quality Factor (Q): The Sharpness of Resonance 

○ Definition: A dimensionless parameter that quantifies the "sharpness" 
or selectivity of a resonant circuit. A higher Q factor means a sharper 
and narrower response curve (e.g., current vs. frequency for series 
resonance), indicating better energy storage relative to energy 
dissipation. 



 

○ For Series RLC Circuit (Qs ): Formula: Qs =XL /R=ωr L/R=(1/R)L/C

  It also represents the voltage magnification at resonance 
(VL /Vsource  or VC /Vsource ). 

○ For Parallel RLC Circuit (Qp ): (assuming resistor in parallel with LC 

branch) Formula: Qp =R/XL =R/(ωr L)=RC/L   It represents the 
current magnification in the tank circuit. 

● Bandwidth (BW): The Range of Frequencies 
○ Definition: The range of frequencies over which the power delivered to 

the circuit is at least half of the power delivered at resonance 
(half-power points). It's the difference between the upper and lower 
half-power frequencies (f2 −f1 ). 

○ Formula: BW=fr /Q 
○ A high Q circuit has a narrow bandwidth (high selectivity), while a low Q 

circuit has a broad bandwidth. 
● Numerical Example 6.1 (Series Resonance): A series RLC circuit has R=5Ω, 

L=100 mH, and C=50μF. Calculate its resonant frequency, quality factor, and 
bandwidth. 

○ Resonant Frequency (fr ): fr =1/(2πLC  )=1/(2π0.1×50×10−6

 )=1/(2π5×10−6  ) fr =1/(2π×0.002236)≈71.18 Hz. 
○ Inductive Reactance at Resonance (XL ): XL =2πfr L=2π×71.18×0.1≈44.72 

Ω. (Note: XC  will also be 44.72Ω at fr ). 
○ Quality Factor (Qs ): Qs =XL /R=44.72/5=8.944. 
○ Bandwidth (BW): BW=fr /Qs =71.18/8.944≈7.96 Hz. This means the circuit 

effectively responds to frequencies in a band of approximately 7.96 Hz 
around 71.18 Hz. 

7. Three-Phase Balanced Circuits: Industrial Power 

Three-phase AC power systems are the backbone of modern electrical grids, offering 
significant advantages over single-phase systems for generation, transmission, and 
heavy industrial applications. 

● Advantages of Three-Phase Systems: 
○ Efficient Power Transmission: For transmitting a given amount of 

power, a three-phase system requires less conductor material than an 
equivalent single-phase system, reducing transmission losses and 
costs. 



 

○ Constant Power Delivery: In a balanced three-phase system, the 
instantaneous total power delivered to the load is constant, unlike 
single-phase power which pulsates. This results in smoother torque 
production in motors and less vibration. 

○ Self-Starting Motors: Three-phase induction motors are inherently 
self-starting, producing a rotating magnetic field that eliminates the 
need for auxiliary starting windings or mechanisms often required in 
single-phase motors. 

○ Versatility: Can easily supply both three-phase loads (e.g., large 
industrial motors) and single-phase loads (e.g., lighting, domestic 
appliances) simultaneously. 

○ Higher Power Density: For a given frame size, three-phase generators 
and motors have a higher power output compared to single-phase 
machines. 

● Generation of Three-Phase Voltages: 
○ Three-phase voltages are generated by having three separate coils 

(windings) in a generator, mechanically displaced by 120∘ electrical 
degrees from each other. As the rotor (magnetic field) rotates, 
sinusoidal voltages are induced in each coil, with each voltage 
phase-shifted by 120∘ relative to the others. 

○ If phase A voltage is VA =Vm sin(ωt), then phase B voltage is 
VB =Vm sin(ωt−120∘), and phase C voltage is VC =Vm sin(ωt−240∘) or 
Vm sin(ωt+120∘). 

● Star (Wye) Connection (Y): 
○ Configuration: One end of each of the three phase windings (A, B, C) is 

connected to a common point, called the neutral point (N). The other 
three ends are brought out as the three line terminals (A, B, C). 

○ Voltage Relations (Balanced System): 
■ Phase Voltage (Vph ): Voltage measured between a line terminal 

and the neutral point (e.g., VAN , VBN , VCN ). 
■ Line Voltage (VL ): Voltage measured between any two line 

terminals (e.g., VAB , VBC , VCA ). 

■ Formula: VL =3  Vph  
■ The line voltages are 120∘ apart from each other, and they lead 

their respective phase voltages by 30∘. 
○ Current Relations (Balanced System): 

■ Line Current (IL ): Current flowing in the line conductors. 
■ Phase Current (Iph ): Current flowing through each phase winding 

or load connected to the phase. 
■ Formula: IL =Iph  

○ Neutral Current: In a perfectly balanced star-connected system, the sum 
of the three phase currents at the neutral point is zero (IA +IB +IC =0). 
Thus, no current flows in the neutral wire. However, in an unbalanced 
system, a neutral current will flow. 



 

○ Applications: Often used for transmission and distribution systems 
where a neutral wire is required to supply both three-phase and 
single-phase loads (e.g., household supply derived from one phase and 
neutral). 

● Numerical Example 7.1 (Star Connection): A balanced star-connected load has 
a phase voltage of 230 V. Calculate the line voltage. If the phase current is 10 A, 
what is the line current? 

○ Line Voltage (VL ): VL =3  Vph =3  ×230≈398.4 V. 
○ Line Current (IL ): IL =Iph =10 A. 

● Delta Connection (Δ): 
○ Configuration: The three phase windings (or loads) are connected 

end-to-end to form a closed triangular loop. Each corner of the triangle 
forms a line terminal. There is no common neutral point. 

○ Voltage Relations (Balanced System): 
■ Formula: VL =Vph  (The voltage across each phase winding is 

directly the line-to-line voltage). 
○ Current Relations (Balanced System): 

■ Formula: IL =3  Iph  
■ The line currents are 120∘ apart from each other, and they lag 

their respective phase currents by 30∘. 
○ Applications: Commonly used for high-power industrial loads (e.g., 

large motors) where a neutral connection is not required. 
● Numerical Example 7.2 (Delta Connection): A balanced delta-connected load 

has a phase current of 15 A. What is the line current? If the line voltage is 400 
V, what is the phase voltage? 

○ Line Current (IL ): IL =3  Iph =3  ×15≈25.98 A. 
○ Phase Voltage (Vph ): Vph =VL =400 V. 

● Power in Three-Phase Circuits (Balanced Systems): The total power in a 
balanced three-phase system is simply three times the power in a single 
phase. The power factor cosϕ is the power factor of each phase. 

○ Total Real Power (Ptotal ): 
■ Using Phase Quantities: Ptotal =3Vph Iph cosϕ 

■ Using Line Quantities: Ptotal =3  VL IL cosϕ (Note: The 
cosϕ here refers to the power factor angle of each phase load, 
i.e., the angle between phase voltage and phase current of that 
load). 



 

○ Total Reactive Power (Qtotal ): 
■ Using Phase Quantities: Qtotal =3Vph Iph sinϕ 

■ Using Line Quantities: Qtotal =3  VL IL sinϕ 
○ Total Apparent Power (Stotal ): 

■ Using Phase Quantities: Stotal =3Vph Iph  

■ Using Line Quantities: Stotal =3  VL IL  
■ Also, as with single-phase power: Stotal =Ptotal2 +Qtotal2 

  
○ Power Factor (PF) of Three-Phase System: 

■ PF=cosϕ=Ptotal /Stotal  (same as for a single phase, assuming a 
balanced load). 

● Numerical Example 7.3 (Three-Phase Power Calculation): A balanced 
three-phase star-connected load with a line voltage of 415 V draws a line 
current of 25 A at a power factor of 0.8 lagging. Calculate the total real power, 
total reactive power, and total apparent power drawn by the load. 

○ Given: VL =415 V, IL =25 A, PF=cosϕ=0.8 (lagging). 
○ Power Factor Angle (ϕ): ϕ=arccos(0.8)≈36.87∘. 

○ Total Real Power (Ptotal ): Ptotal =3  VL IL cosϕ=3
 ×415×25×0.8≈14378 W or 14.378 kW. 

○ Total Apparent Power (Stotal ): Stotal =3  VL IL =3
 ×415×25≈17972 VA or 17.972 kVA. 

○ Total Reactive Power (Qtotal ): Qtotal =3  VL IL sinϕ=3

 ×415×25×sin(36.87∘) Qtotal =3  ×415×25×0.6≈10783 VAR or 
10.783 kVAR (lagging). 



 

○ Verification: Ptotal2 +Qtotal2  =143782+107832

 ≈206733284+116273089  =323006373  ≈17972 VA. 
(Matches Stotal ). 

 

Activities/Assessments: 

To reinforce learning and assess understanding, the following activities and 
assessments are recommended: 

● Exercises on converting between time-domain and phasor representations: 
○ Task 1: Given a time-domain voltage v(t)=200cos(120πt+75∘) V, convert 

it into its RMS phasor representation. 
○ Task 2: Given an RMS current phasor I=15∠−150∘ A, and a frequency of 

400 Hz, write its corresponding time-domain expression i(t). 
○ Task 3: For two voltages v1 (t)=50sin(ωt+30∘) V and v2 (t)=70cos(ωt−45∘) 

V, express both in RMS phasor form and determine the phase difference 
between them (which one leads/lags by how much). 

● Problem-solving for series/parallel AC circuits: 
○ Task 1: A series RLC circuit consists of a 30Ω resistor, a 0.05 H inductor, 

and a 20μF capacitor. If it is connected to a 150 V, 60 Hz AC supply, 
calculate: a) Inductive reactance (XL ) and Capacitive reactance (XC ). b) 
Total complex impedance of the circuit (Ztotal ). c) Total RMS current 
flowing through the circuit (Itotal ). d) RMS voltage across each 
component (VR , VL , VC ). e) Draw a simple phasor diagram showing 
Vsource , Itotal , VR , VL , and VC . 

○ Task 2: A parallel circuit has a 100Ω resistor in one branch and a 0.08 H 
inductor in another branch. It is connected to a 240 V, 50 Hz AC supply. 
Calculate: a) Current flowing through the resistor branch (IR ). b) Current 
flowing through the inductor branch (IL ). c) Total current drawn from the 
supply (Itotal ). d) Draw a simple phasor diagram showing Vsource , IR , 
IL , and Itotal . 

● Calculations of power factor and power triangle components: 
○ Task 1: An industrial load consumes 12 kW of real power and 9 kVAR of 

leading reactive power. a) Calculate the apparent power (S). b) 
Determine the power factor (PF) and state if it is leading or lagging. c) If 
the supply voltage is 400 V (single-phase), calculate the RMS current 
drawn by the load. 

○ Task 2: A single-phase AC circuit has an RMS voltage of 230 V and 
draws an RMS current of 15 A. The current lags the voltage by 40∘. 



 

Calculate the real power, reactive power, apparent power, and power 
factor. Construct the power triangle for this circuit (conceptual sketch). 

● Simulation of resonant circuits (Conceptual/Software-based): 
○ Task 1 (Series Resonance): Describe how you would set up a simulation 

to observe the effect of frequency on current in a series RLC circuit. 
Explain what you would expect to see on a graph of current versus 
frequency, highlighting the resonant frequency and explaining its 
significance. 

○ Task 2 (Parallel Resonance): Describe how you would simulate a parallel 
RLC circuit and observe the effect of frequency on the total impedance 
(or total current drawn from the source). Explain the expected behavior 
and the significance of the resonant frequency in this context. 
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